Math 656 • FINAL EXAM • May 11, 2010

This is a closed-book exam; neither notes nor electronic devices are allowed. Please explain all work.

1) (20pts) Categorize all zeros and singularities of the following functions, find two lowest-order non-zero terms in the Laurent or Taylor series of $f(z)$ around the given point z_{0}, and state the region on which the corresponding expansion is valid. Check your series by calculating the residue at z_{0}
(a) $f(z)=\frac{\sinh z}{1-\cos z}$ at $z_{0}=0$
(b) $f(z)=\frac{\exp (1 / z)}{\log _{-\pi} z}$ at $z_{0}=1$ (branch $\log _{-\pi} z$ satisfies $\left.-\pi \leq \arg z<\pi\right)$
2) (20pts) Describe all singularities of each integrand inside the integration contour, and calculate each integral. Integration contour is a circle of radius $1 / 2$ for both integrals (hint: you may need an inversion mapping in one of these two problems):
(a) $\oint_{|z|=1 / 2} \frac{z}{\cos (1 / z)} d z$
b) $\oint_{|z|=1 / 2} \frac{\cos (1 / z)}{z} d z$
3) (20pts) Calculate any two of the following three integrals. Carefully explain each step.
(a) $\int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x=\frac{\pi(b-a)}{2} \quad(a>0, b>0$ are real constants) Use semicircular indented contour
(b) $\int_{0}^{\infty} \frac{d x}{x^{m}+1}=\frac{\pi}{m \sin (\pi / m)} \quad(m>0$ is an integer) Integrate around a circular sector
(c) $\int_{0}^{\infty} \frac{\ln x d x}{x^{2}+a^{2}}=\frac{\pi \ln a}{2 a}(a>0)$ Intergate $\log _{p} z /\left(z^{2}+a^{2}\right)$ around a semi-circular indented contour
4) (20pts) Some of the statements in (a)-(d) below are false. For each false statement, give a counter-example proving that it isn't true. For each true statement, state the theorem from which it follows:
(a) If the integral of $f(z)$ is zero over any closed contour in domain D, then the second derivative of $f(z)$ exists in D, even if D is not simply-connected.
(b) If $f(z)$ has a derivative in arbitrary domain D, it must also have an anti-derivative everywhere in D.
(c) Contour integrals of $f(z)$ over two different open contours $C_{A B}$ and $C^{\prime}{ }_{A B}$ connecting the same end-points A and B are equal if $f(z)$ is analytic along each of these two contours.
(d) Integral of an entire function $f(z)$ over a circle equals twice the integral of $f(z)$ over the corresponding semi-circle.

Choose *one* problem among problems 5-7 \qquad
5) (20pts) Find coefficients C_{-2} and C_{-4} in the Laurent series for $f(z)=\sec z$ converging within $\pi / 2<|z|<3 \pi / 2$.
6) (20pts) Show that the transformation $w=\frac{1}{2}\left(\frac{z}{e^{a}}+\frac{e^{a}}{z}\right)$, where α is a real constant, maps the interior of the unit circle into the exterior of an ellipse.
7) (20pts) Find and sketch the domain of uniform convergence of the series $F(z)=\sum_{n=1}^{\infty} \pi^{-n} \sin n z$ (use exponential representation of $\sin n z$).

